Epoxyeicosatrienoic acids increase intracellular calcium concentration in vascular smooth muscle cells.
نویسندگان
چکیده
Epoxyeicosatrienoic acids (EETs) are cytochrome P450-derived metabolites of arachidonic acid. They are potent endogenous vasodilator compounds produced by vascular cells, and EET-induced vasodilation has been attributed to activation of vascular smooth muscle cell (SMC) K(+) channels. However, in some cells, EETs activate Ca(2+) channels, resulting in Ca(2+) influx and increased intracellular Ca(2+) concentration ([Ca(2+)](i)). We investigated whether EETs also can activate Ca(2+) channels in vascular SMC and whether the resultant Ca(2+) influx can influence vascular tone. The 4 EET regioisomers (1 micromol/L) increased porcine aortic SMC [Ca(2+)](i) by 52% to 81%, whereas arachidonic acid, dihydroxyeicosatrienoic acids, and 15-hydroxyeicosatetraenoic acid (1 micromol/L) produced little effect. The increases in [Ca(2+)](i) produced by 14,15-EET were abolished by removal of extracellular Ca(2+) and by pretreatment with verapamil (10 micromol/L), an inhibitor of voltage-dependent (L-type) Ca(2+) channels. 14,15-EET did not alter Ca(2+) signaling induced by norepinephrine and thapsigargin. When administered to porcine coronary artery rings precontracted with a thromboxane mimetic, 14,15-EET produced relaxation. However, when administered to rings precontracted with acetylcholine or KCl, 14,15-EET produced additional contractions. In rings exposed to 10 mmol/L KCl, a concentration that did not affect resting ring tension, 14,15-EET produced small contractions that were abolished by EGTA (3 mmol/L) or verapamil (10 micromol/L). These observations indicate that 14,15-EET enhances [Ca(2+)](i) influx in vascular SMC through voltage-dependent Ca(2+) channels. This 14,15-EET-induced increase in [Ca(i)(2+)] can produce vasoconstriction and therefore may act to modulate EET-induced vasorelaxation.
منابع مشابه
Endothelium-derived hyperpolarizing factor: where are we now?
The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms. In general, EDHF-mediated responses inv...
متن کاملEndothelium - Derived Hyperpolarizing Factor Where Are We Now ? Michel
The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms. In general, EDHF-mediated responses inv...
متن کاملEndothelium - Derived Hyperpolarizing Factor Where Are We Now ? Michel Félétou , Paul
The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms. In general, EDHF-mediated responses inv...
متن کاملEpoxyeicosatrienoic acids, TRP channels, and intracellular Ca2+ in the vasculature: an endothelium-derived endothelium-hyperpolarizing factor?
Epoxyeicosatrienoic acids (EETs) are cytochrome P450derived metabolites of arachidonic acid that function as endothelium-derived hyperpolarizing factors (EDHFs) in many species, including humans. Strictly speaking, an EDHF is a substance derived from endothelial cells that stimulates hyperpolarization of the underlying vascular smooth muscle cells (VSMCs) to elicit vasorelaxation. Although a ph...
متن کاملArachidonic acid metabolites as endothelium-derived hyperpolarizing factors.
The endothelium regulates vascular tone through the release of a number of soluble mediators, including NO, prostaglandin I2, and endothelium-derived hyperpolarizing factor. Epoxyeicosatrienoic acids are cytochrome P450 epoxygenase metabolites of arachidonic acid. They are synthesized by the vascular endothelium and open calcium-activated potassium channels, hyperpolarize the membrane, and rela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 34 6 شماره
صفحات -
تاریخ انتشار 1999